Introduction to quantum computing

 dirac notation, measurements, unitary transformations, density matrix formalism
Max (max@noppelmax.online)

August 31, 2019

Übersicht

Bra-Ket
notation from Dirac

Measurements
Allowed transformations

Gates
1-bit full adder
Deutsch-Jozsa Problem

1 Introduction

2 Bra-Ket notation from Dirac

3 Measurements

4 Allowed transformations

5 Gates

6 1-bit full adder

7 Deutsch-Jozsa Problem

Negative probabilities / 2-Norm[1]

- Could have be invented by mathematicians
- Say $\left(p_{1} \ldots p_{N}\right)$
- 1-Norm of $\left(p_{1} \ldots p_{N}\right)=\sum_{i=0}^{N} p_{i}=1$
- 2-Norm/Euclidean Norm is $\sum_{i=0}^{N} p_{i}^{2}=1$
- A quantumbit is 1 and 0 at the same time.

■ By measuring it, the superposition collapses and the qubit is one of the measurementbases.

- In quantum theory is it common to write states with parenthesis like $|\cdot\rangle$.
- This notation is called Bra-Ket Notation or Dirac-Notation ${ }^{1}$

[^0]
Qubits in Dirac-Notation

Qubit

A Quantumbit or Qubit is in state

$$
\alpha \cdot|0\rangle+\beta \cdot|1\rangle
$$

Where α and β are Amplitudes and $\alpha, \beta \in \mathbb{C}$ with

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

Reminder: complex numbers

- Length $|a|$ of a complex vector a is $\sqrt{\bar{a} a}$
- where \bar{a} is the complex conjugate of $a: a+i b \rightarrow a-i b$

Examples for Qubits

- A qubit could be $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

■ or like the classical bit $0 \cdot|0\rangle+1 \cdot|1\rangle=|1\rangle$

Interpretation as vector space

$$
\binom{\alpha}{\beta} \in \mathbb{C}^{2}=\alpha\binom{1}{0}+\beta\binom{0}{1}=\alpha \cdot|0\rangle+\beta \cdot|1\rangle
$$

■ Basis of the vector space is $\{|0\rangle,|1\rangle\}$ so the superposition is getting a linearcombination of the basiselements.

- Valid vectors must fulfill $|\alpha|^{2}+|\beta|^{2}=1$

Quantum registers

$$
\begin{aligned}
& \text { Introduction } \\
& \begin{array}{l}
\text { Bra-Ket } \\
\text { notation from } \\
\text { Dirac }
\end{array} \\
& \begin{array}{l}
\text { Measurements } \\
\text { Allowed trans- } \\
\text { formations } \\
\text { Gates } \\
\text { 1-bit full adder } \\
\\
\begin{array}{ll}
\text { Deutsch-Jozsa } \\
\text { Problem } & \\
& =\left|x_{1}\right\rangle\left|x_{2}\right\rangle \\
& =\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right) \cdot\left(\gamma_{0}|0\rangle+\gamma_{1}|1\rangle\right) \\
& \left.\left.=\beta_{0} \gamma_{0}|00\rangle+\beta_{0} \gamma_{1}\left|01+\beta_{1} \gamma_{0}\right| 10\right\rangle+\beta_{1} \gamma_{1}|11\rangle\right\rangle
\end{array}
\end{array} \begin{array}{l}
\\
\\
\end{array} \quad \alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
\end{aligned}
$$

■ aus $\left|\beta_{0}\right|^{2}+\left|\beta_{1}\right|^{2}=1$ und $\left.\left|\gamma_{0}\right|^{2}+\left|\gamma_{1}\right|^{2}=1\right)$ folgt[2]

$$
\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
$$

Quantum registers

- States of a quantum register with n bits are vectors in a 2^{n} dimensional complex vector space
- Example for 2 bit:

$$
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),
$$

Übersicht

Bra-Ket notation from Dirac

Measurements
Allowed transformations

Gates
1-bit full adder Deutsch-Jozsa Problem

4 Allowed transformations

5 Gates

6 1-bit full adder

7 Deutsch-Jozsa Problem

Bra-Ket notation (Dirac)[3][4]

- Kets like $|0\rangle$ denote column vectors and are typically used to describe quantum states.
- $\{|0\rangle,|1\rangle\}$ represent $\left\{(1,0)^{T},(0,1)^{T}\right\}$
- Bra, $\langle x|$ denotes the conjugate transpose of $|x\rangle$.
- Combining $\langle x|$ and $|y\rangle$ as in $\langle x||y\rangle$, also written as $\langle x \mid y\rangle$, denotes the inner product of two vectors.
- The notation $|x\rangle\langle y|$ is the outer product of $|x\rangle$ and $\langle y|$.

Reminder: Dot product, scalar product

Introduction

Bra-Ket

$$
\langle\vec{a}, \vec{b}\rangle=\vec{a} \cdot \vec{b}=\vec{b}^{\top} \vec{a}=\left(a_{0}, a_{1}\right)\binom{b_{0}}{b_{1}}=\sum_{i=0}^{n} a_{i} b_{i}
$$

- Inner product for Euclidian spaces

Examples

Introduction

- Since $|0\rangle$ is a unit vector $\langle 0 \mid 0\rangle=1$

■ Since $|0\rangle$ and $|1\rangle$ are orthogonal we have $\langle 0 \mid 1\rangle=0$

Outer product/Tensorproduct

Introduction

$$
\vec{u} \otimes \vec{v}=\vec{u} \vec{v}^{T}=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{lll}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} \\
u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} \\
u_{4} v_{1} & u_{4} v_{2} & u_{4} v_{3}
\end{array}\right)
$$

- Combining a m-dimensional vector with a n-dimensional vector results in a $m \times n$-matrix
■ $|0\rangle\langle 1|=\binom{1}{0}(0,1)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

Übersicht

Introduction

Bra-Ket

notation from Dirac

Measurements
Allowed transformations

Gates
1-bit full adder
Deutsch-Jozsa Problem

1 Introduction

2 Bra-Ket notation from Dirac

3 Measurements

4 Allowed transformations

5 Gates

6 1-bit full adder

7 Deutsch-Jozsa Problem

Two types of operations

Introduction

Bra-Ket

notation from
Dirac
Measurements
Allowed trans-
formations

- measurement

■ quantum state transformation

Introduction

Bra-Ket

Measuring

If we measure a qubit in state $\alpha \cdot|0\rangle+\beta \cdot|1\rangle$ the superposition is collapses (in another superposition). After measurement the qubit is with probability $|\alpha|^{2}$ in state $|0\rangle$ and with probability $|\beta|^{2}$ in state $|1\rangle$.

Conjugate transpose

Introduction

Bra-Ket

notation from
Dirac
Measurements

$$
A=\left(a_{j i}\right) \in \mathbb{C}^{m \times n}
$$

Allowed transformations

Gates
1-bit full adder

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right) \\
A^{*}=A^{\dagger}=\bar{A}^{T}=\overline{A^{T}}=\left(\begin{array}{ccc}
\bar{a}_{11} & \ldots & \bar{a}_{m 1} \\
\vdots & \ddots & \vdots \\
\bar{a}_{1 n} & \ldots & \bar{a}_{m n}
\end{array}\right) \in \mathbb{C}^{n \times m}
\end{gathered}
$$

Unitary transformations

Introduction
Bra-Ket

Measurements

- M^{*} or M^{\dagger} denotes the conjugate transpose / Hermitian transpose of the matrix M

Unitary operator

Matrix M is unitary if $M M^{*}=M^{*} M=I$

■ Unitary transformations are rotations or mirrorings in complex vector space

- Unitary transformations are reversible
- Unitary transformations are length-preserving $\| U|x\rangle\|=\||x\rangle \|$
- For finite dimensional vector spaces $M^{*} M=1$ implies $M M^{*}=1$

```
Introduction
```

```
Bra-Ket
```

Bra-Ket
notation from
Dirac
Measurements
Allowed trans-
formations
Gates
1-bit full adder
Deutsch-Jozsa
Problem
4 Allowed transformations

```

\section*{5 Gates}

6 1-bit full adder

7 Deutsch-Jozsa Problem

Single qubit quantum state transformations Pauli-gates

\section*{Introduction}

\section*{Bra-Ket}
notation from
Dirac
Measurements
Allowed trans-
formations
Gates
1-bit full adder
Deutsch-Jozsa Problem
\[
\begin{aligned}
I: & |0\rangle \rightarrow|0\rangle \\
& |1\rangle \rightarrow|1\rangle
\end{aligned} \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\]


\section*{Hadamard \({ }^{2}\) Transformation}

\section*{Introduction}

\section*{Bra-Ket}
notation from
Dirac
Measurements
Allowed transformations

Gates
1-bit full adder

\section*{Hadamard matrix}

Matrix
\[
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\]
is unitary and is called Hadamard Matrix
\[
\begin{aligned}
H: \quad|0\rangle & \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\quad|1\rangle & \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
\]

\footnotetext{
\({ }^{2}\) Mathematicians Jacques Hadamard (1865-1963)
}

\section*{Introduction}

Bra-Ket
notation from
Dirac
Measurements
Allowed trans-
formations
Gates
1-bit full adder
\[
\begin{aligned}
C_{\text {not }}: & |00\rangle
\end{aligned} \rightarrow|00\rangle, \begin{array}{llll}
1 & 0 & 0 & 0 \\
|01\rangle & \rightarrow|01\rangle \\
|10\rangle & \rightarrow|11\rangle \\
|11\rangle & \rightarrow|10\rangle
\end{array}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\]
- \(C_{n o t}\) is unitary since \(C_{n o t}^{*}=C_{n o t}\) and \(C_{n o t}^{*} C_{n o t}=1\)
- \(C_{n o t}\) cannot be decomposed into a tensorproduct of two single-bit transformations


\section*{Other gates}

Measurements
Allowed transformations

1-bit full adder
Deutsch-Jozsa Problem
- Three bit controlled-controlled-NOT gate (Toffoli gate) \({ }^{34}\)
\[
T=|0\rangle\langle 0| \otimes I \otimes I+|1\rangle\langle 1| \otimes C_{n o t}
\]
- Swap operation
\[
S=|00\rangle\langle 00|+|01\rangle\langle 10|+|10\rangle\langle 01|+|11\rangle\langle 11|
\]
- Controlled swap (Fredkin gate)
\[
F=|0\rangle\langle 0| \otimes I \otimes I+|1\rangle\langle 1| \otimes S
\]
\({ }^{3}\) Shi[6] had shown that the Hadamard and Toffoli gate already constitute a universal set of quantum gates.[1, p134]
\({ }^{4}\) Can be used to construct AND and NOT operators, 1-bit full adder
```

Introduction

```

\section*{Bra-Ket}
```

notation from
Dirac
Measurements
Allowed transformations

```

\author{
Gates
}
```

1-bit full adder
Deutsch-Jozsa Problem
4 Allowed transformations
5 Gates

```

\section*{6 1-bit full adder}

7 Deutsch-Jozsa Problem

\section*{Introduction}

\section*{Bra-Ket}

with \(|x\rangle\) and \(|y\rangle\) being the databits, \(|s\rangle\) being the sum, \(|c\rangle\) being the outcoming carrybit and \(|c\rangle\) being the incoming carrybit.

The Toffoli-gate is sufficient to construct arbitrary combinatorial circuit.

\section*{Deutsch-Jozsa Problem}

\section*{Introduction}

\section*{Bra-Ket}

\section*{Deutsch-Jozsa Problem}

Give a function \(f:\{0,1\} \rightarrow\{0,1\}\), say if \(f\) is constant \((f(0)=f(1))\) or balanced \((f(0) \neq f(1))\). Running \(f\) is expensive.

\section*{Deutsch-Jozsa Problem}

Give a function \(f:\{0,1\} \rightarrow\{0,1\}\), say if \(f\) is constant \((f(0)=f(1))\) or balanced \((f(0) \neq f(1))\). Running \(f\) is expensive.

Running \(f\) two times and compare the results.

\section*{Solution with quantum computing}

Bra-Ket

\section*{Deutsch-Jozsa Problem}

Give a function \(f:\{0,1\} \rightarrow\{0,1\}\), say if \(f\) is constant \((f(0)=f(1))\) or balanced \((f(0) \neq f(1))\). Running \(f\) is expensive.


Deutsch-algorithm, 1985

R S. Aaronson, Quantum Computing Since Democritus.
Cambridge University Press, 2013.
( M. Homeister, Quantum Computing verstehen.
Springer Fachmedien WiesbadenGmbH, 2018.
P. A. M. Dirac, "A new notation for quantum mechanics," vol. 35, no. 3, p. 416.
B. Zwiebach, "DIRAC's BRA AND KET NOTATION," p. 15.
(R. G. Rieffel and W. Polak, "An introduction to quantum computing for non-physicists,"

图 Y. Shi, "Both toffoli and controlled-not need little help to do universal quantum computation,"```


[^0]:    ${ }^{1}$ Physiciest Paul Dirac (1902-1984), Nobelprice together with Schroedinger 1933

