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Negative probabilities / 2-Norm[1]

Nature ist not described by probabilities but by amplitudes
which can be positiv, negative or even complex

Could have be invented by mathematicians

Say (p1 . . . pN)

1-Norm of (p1 . . . pN) =
∑N

i=0 pi = 1

2-Norm/Euclidean Norm is
∑N

i=0 p2i = 1
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Qubits

A quantumbit is 1 and 0 at the same time.

By measuring it, the superposition collapses and the qubit
is one of the measurementbases.

In quantum theory is it common to write states with
parenthesis like |·⟩.

This notation is called Bra-Ket Notation or
Dirac-Notation1

1Physiciest Paul Dirac (1902 - 1984), Nobelprice together with
Schroedinger 1933
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Qubits in Dirac-Notation

Qubit
A Quantumbit or Qubit is in state

α · |0⟩+ β · |1⟩

Where α and β are Amplitudes and α, β ∈ C with

|α|2 + |β|2 = 1
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Reminder: complex numbers

Length |a| of a complex vector a is
√

aa

where a is the complex conjugate of a: a + ib → a − ib
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Examples for Qubits

A qubit could be 1√
2
|0⟩+ 1√

2
|1⟩

or like the classical bit 0 · |0⟩+ 1 · |1⟩ = |1⟩
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Interpretation as vector space

(
α
β

)
∈ C2 = α

(
1
0

)
+ β

(
0
1

)
= α · |0⟩+ β · |1⟩

Basis of the vector space is {|0⟩ , |1⟩} so the superposition
is getting a linearcombination of the basiselements.

Valid vectors must fulfill |α|2 + |β|2 = 1
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Quantum registers

R = |x1⟩ |x2⟩
= |x1x2⟩
= (β0 |0⟩+ β1 |1⟩) · (γ0 |0⟩+ γ1 |1⟩)
= β0γ0 |00⟩+ β0γ1 |01 + β1γ0 |10⟩+ β1γ1 |11⟩⟩
= α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩

aus |β0|2 + |β1|2 = 1 und |γ0|2 + |γ1|2 = 1) folgt[2]
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1



Introduction

Bra-Ket
notation from
Dirac

Measurements

Allowed trans-
formations

Gates

1-bit full adder

Deutsch-Jozsa
Problem

Quantum registers

States of a quantum register with n bits are vectors in a 2n

dimensional complex vector space

Example for 2 bit:

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 ,
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Bra-Ket notation (Dirac)[3][4]

Kets like |0⟩ denote column vectors and are typically used
to describe quantum states.

{|0⟩ , |1⟩} represent {(1, 0)T, (0, 1)T}

Bra, ⟨x| denotes the conjugate transpose of |x⟩.

Combining ⟨x| and |y⟩ as in ⟨x||y⟩, also written as ⟨x|y⟩,
denotes the inner product of two vectors.

The notation |x⟩ ⟨y| is the outer product of |x⟩ and ⟨y|.
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Reminder: Dot product, scalar product

⟨⃗a, b⃗⟩ = a⃗ · b⃗ = b⃗Ta⃗ = (a0, a1)
(

b0
b1

)
=

n∑
i=0

aibi

Inner product for Euclidian spaces
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Examples

Since |0⟩ is a unit vector ⟨0|0⟩ = 1

Since |0⟩ and |1⟩ are orthogonal we have ⟨0|1⟩ = 0
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Outer product/Tensorproduct

u⃗ ⊗ v⃗ = u⃗⃗vT =


u1
u2
u3
u4

(
v1 v2 v3

)
=


u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3
u4v1 u4v2 u4v3



Combining a m-dimensional vector with a n-dimensional
vector results in a m × n-matrix

|0⟩ ⟨1| =
(
1
0

)
(0, 1) =

(
0 1
0 0

)
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Two types of operations

measurement

quantum state transformation



Introduction

Bra-Ket
notation from
Dirac

Measurements

Allowed trans-
formations

Gates

1-bit full adder

Deutsch-Jozsa
Problem

Measuring

Measuring
If we measure a qubit in state α · |0⟩+ β · |1⟩ the superposition
is collapses (in another superposition). After measurement the
qubit is with probability |α|2 in state |0⟩ and with probability
|β|2 in state |1⟩.
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Conjugate transpose

A = (aji) ∈ Cm×n

A =

a11 . . . a1n
... . . . ...

am1 . . . amn



A∗ = A† = AT
= AT =

a11 . . . am1
... . . . ...

a1n . . . amn

 ∈ Cn×m
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Unitary transformations

M∗ or M† denotes the conjugate transpose / Hermitian
transpose of the matrix M

Unitary operator
Matrix M is unitary if MM∗ = M∗M = I

Unitary transformations are rotations or mirrorings in
complex vector space

Unitary transformations are reversible

Unitary transformations are length-preserving
||U |x⟩ || = || |x⟩ ||

For finite dimensional vector spaces M∗M = 1 implies
MM∗ = 1
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Single qubit quantum state transformations /
Pauli-gates

I : |0⟩ → |0⟩
(
1 0
0 1

)
|1⟩ → |1⟩

Pauli-X, Bitflip : |0⟩ → |1⟩
(
0 1
1 0

)
|1⟩ → |0⟩

Pauli-Y : |0⟩ → − |1⟩
(

0 1
−1 0

)
|1⟩ → |0⟩

Pauli-Z, Phaseflip : |0⟩ → |0⟩
(
1 0
0 −1

)
|1⟩ → − |1⟩

X



Introduction

Bra-Ket
notation from
Dirac

Measurements

Allowed trans-
formations

Gates

1-bit full adder

Deutsch-Jozsa
Problem

Hadamard2 Transformation

Hadamard matrix
Matrix

H =
1√
2

(
1 1
1 −1

)
is unitary and is called Hadamard Matrix

H : |0⟩ → 1√
2
(|0⟩+ |1⟩)

|1⟩ → 1√
2
(|0⟩ − |1⟩)

2Mathematicians Jacques Hadamard (1865-1963)
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controlled-NOT gate (Cnot)[5]

Cnot : |00⟩ → |00⟩

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩

Cnot is unitary since C∗
not = Cnot and C∗

notCnot = I

Cnot cannot be decomposed into a tensorproduct of two
single-bit transformations
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Other gates

Three bit controlled-controlled-NOT gate (Toffoli gate)34

T = |0⟩ ⟨0| ⊗ I ⊗ I + |1⟩ ⟨1| ⊗ Cnot

Swap operation
S = |00⟩ ⟨00|+ |01⟩ ⟨10|+ |10⟩ ⟨01|+ |11⟩ ⟨11|

Controlled swap (Fredkin gate)
F = |0⟩ ⟨0| ⊗ I ⊗ I + |1⟩ ⟨1| ⊗ S

3Shi[6] had shown that the Hadamard and Toffoli gate already
constitute a universal set of quantum gates.[1, p134]

4Can be used to construct AND and NOT operators, 1-bit full adder
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1-bit full adder

|c⟩
|x⟩
|y⟩
|s⟩
|c′⟩

|c⟩
|x⟩
|y⟩
|0⟩
|0⟩

with |x⟩ and |y⟩ being the databits, |s⟩ being the sum, |c′⟩ being
the outcoming carrybit and |c⟩ being the incoming carrybit.

The Toffoli-gate is sufficient to construct arbitrary
combinatorial circuit.
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Deutsch-Jozsa Problem
Give a function f : {0, 1} → {0, 1}, say if f is constant
(f(0) = f(1)) or balanced (f(0) ̸= f(1)). Running f is expensive.
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Classical solution

Deutsch-Jozsa Problem
Give a function f : {0, 1} → {0, 1}, say if f is constant
(f(0) = f(1)) or balanced (f(0) ̸= f(1)). Running f is expensive.

Running f two times and compare the results.
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Solution with quantum computing

Deutsch-Jozsa Problem
Give a function f : {0, 1} → {0, 1}, say if f is constant
(f(0) = f(1)) or balanced (f(0) ̸= f(1)). Running f is expensive.

Figure: Deutsch-algorithm, 1985
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