

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Introduction to quantum computing dirac notation, measurements, unitary transformations, density matrix formalism

Max (max@noppelmax.online)

August 31, 2019

Introduction

Bra-Ket notation fror Dirac

1 Introduction

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Allowed transformations

2 Bra-Ket notation from Dirac

Negative probabilities / 2-Norm[1]

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

- Nature ist not described by probabilities but by *amplitudes* which can be positiv, **negative** or even complex
- Could have be invented by mathematicians
- Say $(p_1 \dots p_N)$
- 1-Norm of $(p_1 \dots p_N) = \sum_{i=0}^N p_i = 1$
- 2-Norm/Euclidean Norm is $\sum_{i=0}^{N} p_i^2 = 1$

Qubits

Introduction

Bra-Ket notation from Dirac

- Measurements
- Allowed transformations
- Gates
- 1-bit full adder
- Deutsch-Jozsa Problem

- A quantumbit is 1 and 0 at the same time.
- By measuring it, the superposition collapses and the qubit is one of the measurementbases.
- In quantum theory is it common to write states with parenthesis like |·>.
- This notation is called Bra-Ket Notation or Dirac-Notation¹

¹Physiciest Paul Dirac (1902 - 1984), Nobelprice together with Schroedinger 1933

Qubits in Dirac-Notation

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Qubit

A Quantumbit or Qubit is in state

$$\alpha \cdot |0\rangle + \beta \cdot |1\rangle$$

Where α and β are *Amplitudes* and $\alpha, \beta \in \mathbb{C}$ with

$$|\alpha|^2 + |\beta|^2 = 1$$

Reminder: complex numbers

luction

Bra-Ket notation from Dirac		
Measurements		
Allowed trans- formations		
Gates		
1-bit full adder	• Length $ a $ of a complex vector a is $\sqrt{a}a$	

- Deutsch-Jozsa Problem
- where \overline{a} is the complex conjugate of $a: a + ib \rightarrow a ib$

Examples for Qubits

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

• A qubit could be
$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

 \blacksquare or like the *classical* bit $0\cdot |0\rangle + 1\cdot |1\rangle = |1\rangle$

Interpretation as vector space

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

$$\binom{\alpha}{\beta} \in \mathbb{C}^2 = \alpha \binom{1}{0} + \beta \binom{0}{1} = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$$

- Basis of the vector space is {|0⟩, |1⟩} so the superposition is getting a linearcombination of the basiselements.
- \blacksquare Valid vectors must fulfill $|\alpha|^2+|\beta|^2=1$

Quantum registers

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed trans

Gates

1-bit full adder

Deutsch-Jozsa Problem $\begin{array}{rcl} R & = & \left| x_1 \right\rangle \left| x_2 \right\rangle \\ & = & \left| x_1 x_2 \right\rangle \end{array}$

$$= (\beta_0 |0\rangle + \beta_1 |1\rangle) \cdot (\gamma_0 |0\rangle + \gamma_1 |1\rangle)$$

- $= \beta_0 \gamma_0 |00\rangle + \beta_0 \gamma_1 |01 + \beta_1 \gamma_0 |10\rangle + \beta_1 \gamma_1 |11\rangle\rangle$
- $= \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$

■ aus
$$|\beta_0|^2 + |\beta_1|^2 = 1$$
 und $|\gamma_0|^2 + |\gamma_1|^2 = 1$) folgt[2]
 $|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$

Quantum registers

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

- States of a quantum register with n bits are vectors in a 2ⁿ dimensional complex vector space
- Example for 2 bit:

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix},$$

Introduction

1 Introduction

Measurement

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Measurements

Allowed transformations

Bra-Ket notation (Dirac)[3][4]

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

- Kets like |0⟩ denote column vectors and are typically used to describe quantum states.
- $\{ \left| 0 \right\rangle, \left| 1 \right\rangle \}$ represent $\{ (1,0)^T, (0,1)^T \}$
- **Bra**, $\langle x |$ denotes the conjugate transpose of $|x \rangle$.
- Combining $\langle x|$ and $|y\rangle$ as in $\langle x||y\rangle$, also written as $\langle x|y\rangle$, denotes the **inner product** of two vectors.
- The notation $|x\rangle \langle y|$ is the **outer product** of $|x\rangle$ and $\langle y|$.

Reminder: Dot product, scalar product

Introduction

Bra-Ket	
notation	from
Dirac	

Measurements

Allowed trans formations

Gates

1-bit full adder

Deutsch-Jozsa Problem

$$\langle \vec{a}, \vec{b} \rangle = \vec{a} \cdot \vec{b} = \vec{b}^T \vec{a} = (a_0, a_1) \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} = \sum_{i=0}^n a_i b_i$$

Inner product for Euclidian spaces

Examples

			÷i	n

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem • Since $|0\rangle$ is a unit vector $\langle 0|0\rangle = 1$

• Since $|0\rangle$ and $|1\rangle$ are orthogonal we have $\langle 0|1\rangle = 0$

Outer product/Tensorproduct

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed trans formations

Gates

1-bit full adder

Deutsch-Jozsa Problem

$$\vec{u} \otimes \vec{v} = \vec{u}\vec{v}^{\mathsf{T}} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} u_1v_1 & u_1v_2 & u_1v_3 \\ u_2v_1 & u_2v_2 & u_2v_3 \\ u_3v_1 & u_3v_2 & u_3v_3 \\ u_4v_1 & u_4v_2 & u_4v_3 \end{pmatrix}$$

■ Combining a *m*-dimensional vector with a *n*-dimensional vector results in a *m* × *n*-matrix

•
$$|0\rangle \langle 1| = \begin{pmatrix} 1\\ 0 \end{pmatrix} (0,1) = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$

Introduction

Bra-Ket notation fror Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

3 Measurements

Allowed transformations

2 Bra-Ket notation from Dirac

Two types of operations

Introduction			
Bra-Ket notation from Dirac			
Measurements			
Allowed trans- formations			
Gates			
1-bit full adder	measurement		

- Deutsch-Jozsa Problem
- quantum state transformation

Measuring

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Measuring

If we measure a qubit in state $\alpha \cdot |0\rangle + \beta \cdot |1\rangle$ the superposition is collapses (in another superposition). After measurement the qubit is with probability $|\alpha|^2$ in state $|0\rangle$ and with probability $|\beta|^2$ in state $|1\rangle$.

Introduction

Bra-Ket notation fror Dirac Introduction

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Measurements

4 Allowed transformations

Bra-Ket notation from Dirac

Conjugate transpose

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

$$A = (a_{ji}) \in \mathbb{C}^{m \times n}$$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$A^* = A^{\dagger} = \overline{A}^T = \overline{A}^T = \begin{pmatrix} \overline{a}_{11} & \dots & \overline{a}_{m1} \\ \vdots & \ddots & \vdots \\ \overline{a}_{1n} & \dots & \overline{a}_{mn} \end{pmatrix} \in \mathbb{C}^{n \times m}$$

Unitary transformations

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem • M^* or M^{\dagger} denotes the conjugate transpose / Hermitian transpose of the matrix M

Unitary operator

Matrix *M* is unitary if $MM^* = M^*M = I$

- Unitary transformations are rotations or mirrorings in complex vector space
- Unitary transformations are reversible
- Unitary transformations are length-preserving $||U|x\rangle || = |||x\rangle ||$
- For finite dimensional vector spaces $M^*M = 1$ implies $MM^* = 1$

Introduction

Bra-Ket notation fror Dirac Introduction

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

Allowed transformations

Bra-Ket notation from Dirac

Deutsch-Jozsa Problem

Single qubit quantum state transformations / Pauli-gates

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozs Problem

$$\begin{array}{c|cccc} I: & |0\rangle \rightarrow |0\rangle & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \text{Pauli-X, Bitflip}: & |0\rangle \rightarrow |1\rangle & \begin{pmatrix} 0 & 1 \\ 1 \end{pmatrix} \\ \text{Pauli-Y}: & |0\rangle \rightarrow -|1\rangle & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \text{Pauli-Y}: & |0\rangle \rightarrow -|1\rangle & \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \text{Pauli-Z, Phaseflip}: & |0\rangle \rightarrow |0\rangle & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{array}$$

1 - 1

Hadamard² Transformation

Introduction

Bra-Ket notation from Dirac

Hadamard matrix

Matrix

Allowed trans-

Gates

1-bit full adder

Deutsch-Jozsa Problem $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$

is unitary and is called Hadamard Matrix

ŀ

$$\begin{aligned} \mathcal{H} : \quad |0\rangle &\to \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \\ & |1\rangle &\to \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \end{aligned}$$

²Mathematicians Jacques Hadamard (1865-1963)

controlled-NOT gate $(C_{not})[5]$

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

 $\begin{array}{ccc} \mathcal{C}_{not}: & |00\rangle \rightarrow |00\rangle & \begin{pmatrix} 1 & 0 & 0 & 0 \\ |01\rangle \rightarrow |01\rangle & \\ |10\rangle \rightarrow |11\rangle & \\ |11\rangle \rightarrow |10\rangle & \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

- C_{not} is unitary since $C^*_{not} = C_{not}$ and $C^*_{not}C_{not} = I$
- *C_{not}* cannot be decomposed into a tensorproduct of two single-bit transformations

Other gates

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

- Three bit controlled-controlled-NOT gate (Toffoli gate)³⁴ $T = |0\rangle \langle 0| \otimes I \otimes I + |1\rangle \langle 1| \otimes C_{not}$
- Swap operation
 - $\mathbf{S}=\left|00\right\rangle \left\langle 00\right|+\left|01\right\rangle \left\langle 10\right|+\left|10\right\rangle \left\langle 01\right|+\left|11\right\rangle \left\langle 11\right|$
- Controlled swap (Fredkin gate) $F = |0\rangle \langle 0| \otimes I \otimes I + |1\rangle \langle 1| \otimes S$

³Shi[6] had shown that the Hadamard and Toffoli gate already constitute a *universal set of quantum gates*.[1, p134]

 4 Can be used to construct AND and NOT operators, 1-bit full adder

Introduction

Bra-Ket notation fror Dirac Introduction

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

- Measurements
- Allowed transformations

Bra-Ket notation from Dirac

Deutsch-Jozsa Problem

1-bit full adder

Introduction

Bra-Ket notation from Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem

with $|x\rangle$ and $|y\rangle$ being the databits, $|s\rangle$ being the sum, $|c'\rangle$ being the outcoming carrybit and $|c\rangle$ being the incoming carrybit.

The Toffoli-gate is sufficient to construct arbitrary combinatorial circuit.

Introduction

Bra-Ket notation fror Dirac 1 Introduction

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem Measurements

Allowed transformations

Bra-Ket notation from Dirac

Deutsch-Jozsa Problem

Deutsch-Jozsa Problem

Introduction	
Bra-Ket notation from Dirac	
Measurements	
Allowed trans- formations	
Gates	Deutsch-Jozsa Problem
1-bit full adder	Give a function $f: \{0, 1\} \rightarrow \{0, 1\}$, say if f is constant
Deutsch-Jozsa Problem	$(f(0) = f(1))$ or balanced $(f(0) \neq f(1))$. Running f is expensive.

Classical solution

Introduction	
Bra-Ket notation from Dirac	
Measurements	
Allowed trans- formations	Deutsch-Jozsa Problem
Gates	Give a function $f: \{0, 1\} \rightarrow \{0, 1\}$, say if f is constant
1-bit full adder	
Deutsch-Jozsa Problem	$(f(0) = f(1))$ or balanced $(f(0) \neq f(1))$. Running f is expensive.

Running f two times and compare the results.

Solution with quantum computing

Introduction

Bra-Ket notation from Dirac

Deutsch-Jozsa Problem

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem Give a function $f: \{0, 1\} \rightarrow \{0, 1\}$, say if f is constant (f(0) = f(1)) or balanced $(f(0) \neq f(1))$. Running f is expensive.

Deutsch-algorithm, 1985

Literatur I

Introduction

Bra-Ket notation fron Dirac

Measurements

Allowed transformations

Gates

1-bit full adder

Deutsch-Jozsa Problem S. Aaronson, *Quantum Computing Since Democritus*. Cambridge University Press, 2013.

M. Homeister, Quantum Computing verstehen.

Springer Fachmedien WiesbadenGmbH, 2018.

P. A. M. Dirac, "A new notation for quantum mechanics," vol. 35, no. 3, p. 416.

- B. Zwiebach, "DIRAC's BRA AND KET NOTATION," p. 15.
- E. G. Rieffel and W. Polak, "An introduction to quantum computing for non-physicists,"

Problem

Literatur II

Introduction	
Bra-Ket notation from Dirac	
Measurements	
Allowed trans- formations	
Gates	X Ch: "Deal as field and controlled and model little below."
1-bit full adder	F. Shi, "Both toffoli and controlled-not need little help to
Deutsch- Jozsa	do universal quantum computation,"