
The EuroTwo v0.002 Manual

maximilian noppel

9. März 2020

The following document is WORK IN PROGRESS!

As compared to the document on the EuroOne this project
is also WORK IN PROGRESS. This EuroTwo is much
smaller and simpler than EuroOne and the logic was
created and simulated within 4 hours. The goal of this
project is to implement exactly the CPU described here
from Hardware. Therefore I will use relays, resistors,
capacitors and some inductions. Maybe small part will be
implement with external ICs, for example the RAM and
the ROM. This makes it easier to visualize the RAM and
and program the ROM. Maybe i will also add a MIR to
address MMIOs (UART, ...).

The simple ALU used in this project is already in produc-
tion as a simple preproject to gain same experiences with
this kind of project.

Well, enjoy reading!

1

Inhaltsverzeichnis
1 Features 3

2 Introduction 3

3 Basic Architecture 3

4 ALU 4
4.1 Flags . 4

5 The Instruction Set 5

6 ControlUnit 5

7 Required gates and components 7

2

1 Features

• Harvard-Architecture

• Three 4-bit generalpurpose-registers

• One 8-bit programmcounter-register

• fixed 12-bit instruction length

• fixed 1 cycles per instruction

• 16 x 4-bit RAM

• 255 x 12-bit ROM for instructions

• Only handles unsigned instructions

2 Introduction

This documents describes the EuroTwo CPU. The little sister to the bigger EuroOne CPU I simulated in logisim. As
the EuroOne projects grows bigger and bigger my goal to implement it in hardware from basic components is no longer
a way to go. That’s why I started this project of a more simplier and smaller CPU. Also I regained the motivation to
implement it from relays, transistors (TTL) or much cooler LED-Transistor-Logic. In the following sections I briefly
describe the different components of the CPU and how the work.

3 Basic Architecture

The architecture basically is a harvard architecture. This give my the possibility of a much bigger memory for instruc-
tions than for the RAM. Also the buswidth can be different. This is nice because I wanted to have 4-bit register. But
I dont want to hasle with loading 4-bit words in the instruction registers because I would therefore need even more
4-bit registers. Now I only have 8-bit programmcounter pointing to the ROM which provides 12-bit of data to the
ControlUnit. The ControlUnit is also not storing the instruction because we have got a separat bus for the execution.
This safes components and execution time.

The architecture consists of 3 parts:

• The ControlUnit (CU)

• The ALU

• The Backplane

In the following section I will describe any of them I some details, if I am motivated to write stuff... :D

3

Abbildung 1: Draft of the CPU-architecture

4 ALU

Abbildung 2: Draft of the ALU

4.1 Flags

The ALU is outputting the following signals to the CU:

• CF: Carry Flag

4

• ZF: Zero Flag

5 The Instruction Set

In the following table I present the very simple instruction set for the EuroTwo CPU. Each instruction is given in
different flavours depending on which operators it is applied. The Assembler language may consider this.

Instruction Formal definition Binary representation Description
ADD C := A+B(mod 16) 0xDE0 Sets CF and ZF
SUB C := A−B(mod 16) 0xDE3 Sets CF and ZF
ADD1A C := A+ 1(mod 16) 0xDE4 Sets CF and ZF
ADD1B C := 1 +B(mod 16) 0xDE8 Sets CF and ZF
SUB1A C := A− 1(mod 16) 0xDE7 Sets CF and ZF
MOV B := A 0x910 Move
MOV A := B 0x850 Move
MOV B := C 0x930 Move
MOV A := C 0x8B0 Move
LD A := [addr] 0x88 <4bit addr> Load from DataMemory
LD B := [addr] 0x90 <4bit addr> Load from DataMemory
LD C := [addr] 0x98 <4bit addr> Load from DataMemory
LC A := c 0x8F <4bit constant> Load Constant
LC B := c 0x97 <4bit constant> Load Constant
LC C := c 0x9F <4bit constant> Load Constant
STR [addr] := A 0x81 <4bit addr> Store
STR [addr] := B 0x82 <4bit addr> Store
STR [addr] := C 0x83 <4bit addr> Store
JMP PC := addr 0x4 <8bit addr>
JZ if ZF : PC := addr 0x5 <8bit addr> JumpZero, JumpEqual
JA if (¬CF ∧ ¬ZF) : PC := addr 0x6 <8bit addr> JumpGreater
JB if CF : PC := addr 0x7 <8bit addr> JumpLess
CMP 0xE63 Sets CF and ZF
NOP 0x000 No operation

Tabelle 1: Instruction Set

6 ControlUnit

The ControlUnit is decoding the incoming instruction. It does not use a instruction register. As I used the harvard
architecture and only clock to the PC at the next instruction cycle it simple uses the output of the ROM to decode
the instructions. As all instructions are 12-bit long this is quite simple. The following table documentates how the
single bit get interpretet:

5

Abbildung 3: Draft of the instruction decoding

The blue part is describing the typ of the instruction. There are four types a instruction can have:

• NoOperation Instruction (00)

• Jump Instruction (01)

• DataFlow Instruction (10)

• Arthm. Instruction (11)

This is giving in blue in the bits [11:10]. Next the gray part. Those 2 bits [9:8] are interpreted as ConditionCode
for the Jump Instruction. So the Jump is only performed if the condition holds. There are three conditioned instruction
and the regular jump instruction that is always performed. Then there are yellow fields. These contain addresses in
different length and constants. They are always applied to the busses, in dependent of the instruction performed.
Unless a store happens this is just fine. The green cells are representing two things. First the 2 bit that select the store
line. The current databus can be stored at four positions:

• RAM (00)

• Register A (01)

• Register B (10)

• Register C (11)

These 2 bits are decoded the selected store input of the module. The 3 bits follow to selected the module obtaining
the databus. The output of this component is applied to the databus. They available components are:

• RAM (000)

• Register A (001)

• Register B (010)

• Register C (011)

• Reserved (100)

• Reserved (101)

• ALU (110)

• Const (111)

At last I want to mention the pinkish cells. Each column is represention one signal that is either directly connected to
the ALU inputs or is selecting the input for the ALU. For simpler instructions and loops one can overwrite the ALU
with ones for the A and B input. This give the two instructions ADD1A and ADD1B. Anyway the result is written to
C. Also this gives a DEC-like instruction SUB1A if we overwrite B with 1 and execute a substration.

6

This whole decoding process is implemented in the following circuit:

Abbildung 4: Draft of the control unit

7 Required gates and components

The logisim simulation gives me a simple table of my used gates and components. Unfortunately the bigger components
like decoders and registers are listed seperatly. Thus there will be much more gates required to implement the registers,
decoders, counters and D-FF.

Type Sequencer CU ALU Remaining Total
NOT Gate 0 4 0 5 9
AND Gate 1 10 8 2 21
OR Gate 0 2 4 1 7
XOR Gate 0 0 12 0 12
Controlled Buffer 0 0 0 1 1
Decoder 1 3 0 0 4
Register 0 0 0 3 3
D-FF 0 2 0 0 2
Counter 1 1 0 0 2

Tabelle 2: Used gates and components

[1]

Literatur

[1] “x86 assembly language - wikipedia.”

7

	Features
	Introduction
	Basic Architecture
	ALU
	Flags

	The Instruction Set
	ControlUnit
	Required gates and components

