
The EuroTwo v0.004 Manual

maximilian noppel

28. April 2020

The following document is WORK IN PROGRESS!

As compared to the document on the EuroOne this project
is also WORK IN PROGRESS. This EuroTwo is much
smaller and simpler than EuroOne and the logic was
created and simulated within 4 hours. The goal of this
project is to implement exactly the CPU described here
from Hardware. Therefore I will use relays, resistors,
capacitors and some inductions. Maybe small part will be
implement with external ICs, for example the RAM and
the ROM. This makes it easier to visualize the RAM and
and program the ROM. Maybe i will also add a MIR to
address MMIOs (UART, ...).

The simple ALU used in this project is already in produc-
tion as a simple preproject to gain same experiences with
this kind of project.

Well, enjoy reading!

1

Inhaltsverzeichnis
1 Features 3

2 Introduction 3

3 Basic Architecture 3

4 ALU 4
4.1 Flags . 5

5 The Instruction Set 5

6 ControlUnit 5

2

1 Features

• Harvard-Architecture

• Four 4-bit generalpurpose-registers

• One 12-bit programcounter-register

• fixed 16-bit instruction length

• fixed 1 cycles per instruction

• 28 x 4-bit RAM

• 212 x 16-bit ROM for instructions

• Only handles unsigned instructions

• Every instruction runs in 1 clock cycle

2 Introduction

This documents describes the EuroTwo CPU. The little sister to the bigger EuroOne CPU I simulated in logisim. As
the EuroOne projects grows bigger and bigger my goal to implement it in hardware from basic components is no longer
a way to go. That’s why I started this project of a more simplier and smaller CPU. Also I regained the motivation to
implement it from relays, transistors (TTL) or much cooler LED-Transistor-Logic. In the following sections I briefly
describe the different components of the CPU and how the work.

3 Basic Architecture

The architecture basically is a harvard architecture. This give my the possibility of a much bigger memory for instruc-
tions than for the RAM. Also the buswidth can be different. This is nice because I wanted to have 4-bit register. But
I dont want to hasle with loading 4-bit words in the instruction registers because I would therefore need even more
4-bit registers. Now I only have 12-bit programcounter pointing to the ROM which provides 16-bit of data to the
ControlUnit. The ControlUnit is also not storing the instruction because we have got a separat bus for the execution.
This saves components and execution time.

The architecture consists of 3 parts:

• The ControlUnit (CU)

• The ALU

• The Backplane

In the following section I will describe any of them I some details, if I am motivated to write stuff... :D

3

Abbildung 1: Draft of the CPU-architecture

4 ALU

Abbildung 2: Draft of the ALU

4

4.1 Flags

The ALU is outputting the following signals to the CU:

• CF: Carry Flag

• ZF: Zero Flag

5 The Instruction Set

In the following table I present the very simple instruction set for the EuroTwo CPU. One can read the binary
representation of the single instruction from figure 3 so I will just give some examples, so that the reader can check if
she did it right. There are four types of instructions:

• NoOperation Instruction

• Jump Instruction

• DataFlow Instruction

• Arthm. Instruction

I provide a comprehensive list of all supported instructions with their binary represenation in the appendix ??. Here
comes the examples:

Instruction Formal definition Description
ADD r1 r2 r3 r3 := r1 + r2(mod 16) Sets CF and ZF
SUB r1 r2 r3 r3 := r1− r2(mod 16) Sets CF and ZF
ADDC r1 const r2 r2 := r1 + c(mod 16) Sets CF and ZF
SUBC r1 const r2 r2 := r1− c(mod 16) Sets CF and ZF
MOV r1 r2 r2 := r1 Move
LD addr r1 r1 := [addr] Load from RAM
LDR r1 r1 := [rb||ra] Load from RAM
LC const r1 r1 := c Load Constant
STR r1 addr [addr] := r1 Store to addr
STRR r1 [rb||ra] := r1 Store to rb||ra
JMP PC := addr
JZ if ZF : PC := addr JumpZero, JumpEqual
JA if (¬CF ∧ ¬ZF) : PC := addr JumpGreater
JB if CF : PC := addr JumpLess
CMP Sets CF and ZF
NOP No operation

Tabelle 1: Instruction Set

Every instruction is running in one cycle!

6 ControlUnit

The ControlUnit is decoding the incoming instruction. It does not use a instruction register. As I used the harvard
architecture and only clock to the PC at the next instruction cycle it simple uses the output of the ROM to decode
the instructions. As all instructions are 16-bit long this is quite simple. The following table documentates how the
single bit get interpretet:

5

Abbildung 3: Draft of the instruction decoding

The blue part is describing the typ of the instruction. There are four types a instruction can have:

• No Operation Instruction (00)

• Jump Instruction (01)

• DataFlow Instruction (10)

• Arthm. Instruction (11)

This is giving in blue in the bits [15:14]. For the arithmetic and dataflow instructions the second bit is ommited.
These are disinguished by the databus select bits in light green. Next the gray part. Those 2 bits [13:12] are
interpreted as condition code for the jump instruction. So the jump is only performed if the condition holds. There
are three conditioned instruction and the regular jump instruction that is always performed. Then there are yellow
fields. These contain addresses in different length and constants. They are always applied to the busses, independent
of the instruction performed. Unless a store happens this is just fine. The purple cells are representing the store line.
The current databus can be stored at eight positions:

• unused (000)

• unused (001)

• Register A (010)

• Register B (011)

• Register C (100)

• Register D (101)

• unused (110)

• RAM (111)

These 3 bits decode the selected store input of the module. The next three bits (in light green) select the module
obtaining the databus. The output of this component is applied to the databus. They available components are:

• Register A (000)

• Register B (001)

• Register C (010)

• Register D (011)

• RAM (100)

• Const (101)

• ALU inverted (110)

• ALU (111)

For the ALU input in bright green and blue, the following 3 bits can be set:

• Register A (000)

• Register B (001)

6

• Register C (010)

• Register D (011)

• Const (100)

• Const (101)

• Const (110)

• Const (111)

If the first bit is 1, the following 4 bits [3:0] of the instruction are applied to the ALU as constant value.

The dark blueish bit [8] is representing if the address in the instruction is applied to the addressbus or the concade-
nation of register ra and rb.

The brown bit [1:0] are only applied if it is a arthmetic operation and for the second alu input is a register selected.

• Add or Sub (00)

• bitwise Or (01)

• bitwise And (10)

• bitwise Xor (11)

Keep in mind that those AND, OR and XOR instructions do also set the CF and ZF flags.

This whole decoding process is implemented in the following circuit:

Abbildung 4: Draft of the control unit

[1]

Literatur

[1] “x86 assembly language - wikipedia.”

7

	Features
	Introduction
	Basic Architecture
	ALU
	Flags

	The Instruction Set
	ControlUnit

