
Code Golfing 005 - Colorized Rummy

Maximilian Noppel

March 25, 2021

The Problem

We need to solve a subproblem of the well
known card game Rummy. In Rummy the
player must create groups of at least three
cards. The available cards are the numbers
1 to 13 in the colors yellow (r), blue (b), black
(k) and red (r). The player is allowed to either
make a group from cards of the same colors
but in ascending order or of different colors but
with the same numbers. In the second option
the biggest possible group is therefore of size
four, as only four colors exist. In this Code
Golfing we only consider the second case. We
assume every card has the same number. The
problem is a decision problem. Given a string
of the letters y,b,k and r, each representing a
card of the given color, the program must de-
cide if the cards can be played validly. If this
is the case it should output 0 for OK. Otherwise
the output should be 1 for ERROR.

Intuition

Give is string s ∈ {y,b,k,r}∗. It turns out that
the order does not matter. To solve this task,

we only need the number of occurrences of each
letter. The counting can be done in O(n). So
the input to our program is R4.

In the first step we sort our four numbers.
W.l.o.g. this could look like in Fig. 1.

Figure 1. Sorted number of cards

The idea of our solution is that we can put the
color with the least occurrences into the gaps
of the other colors. This would look like in
Fig. 2.

Figure 2. Put y into the gaps

This is a valid solution as we show in Fig. 3.

Figure 3. This yield a valid solution

In this special case the solution is clear. But
what happens if we have a very small difference
between the two colors that have the least oc-
currences, as visualized in Fig. 4.

1

Figure 4. Small difference between y and b

In this case we have a number of groups with
four different cards. It is clear that yellow
could not exceed the red bar. If this would
be the case, yellow would no longer have the
least occurrences and the sorting would be dif-
ferent. Or, if all color occur equally often, the
solution is also 0 OK.

Figure 5. Sorted number of cards

The final question is how we solve the decision
problem? The solution is very simple after the
presented insights. W.l.o.g. yellow must be
longer or equally long as the two gaps. Oth-
erwise there would be groups with only two
cards. As we must output 0 for the OK case, we
must invert this inequality. If yellow is shorter
as the two gaps combined, the problem is not
solvable and the expected output is 1 ERROR.

Some Math Given c ∈ R4 (a 4D vector).
The elements of c are named c0, ..., c3 s.t. c0 ≤
c1 ≤ c2 ≤ c3. Our solution is constant:

c0 < 2 ⋅ c3 − c2 − c1

Solutions

In Python the solution looks as follows:

1 import sys
2 s = sys . argv [1]
3 c = [s . count (x) for x in "yrbk"]
4 c=sorted (c)
5 e x i t (c [0] <2∗ c [3] − c [1] − c [2])

The winning Ruby solution is 69 bytes long:

s=$*[0].chars.tally.values+[0,0,0].sort

exit(s[3]>=2*s[0]-s[1]-s[2])

The complexity is therefore only O(n), where
n is the number of cards. As the number of
distinctive colors is constant, the complexity of
sorting is also constant. This leads to the ob-
servation that if we would get directly the num-
bers as inputs our complexity would be O(1).
A rather surprising solution to this problem.

Conclusion

At the first look, the problem seems compli-
cated. If we take some time and try to repre-
sent things visually we naturally find out that
sorting of the occurrences is a good idea. From
this we quickly arrive at this geometrical solu-
tion. Naive approaches that do not consider
sorting end up using a lot of ifs. Other solu-
tions try to group things together, one group
after another, by decrementing the numbers
piece by piece. These solutions are highly in-
efficient and contain a lot of loops.

In this short article we showed how to arrive
at the optimal solution to this problem.

2

